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1 Introduction

SPARSKIT][6], developed by Yousef Saad at the University of Minnesota, is a basic tool-
kit for sequential sparse matrix computations and is widely used in scientific community.
Written in Fortran 77 and having a cumbersome interface, it is considered, however, a
legacy code. Our objective is to enable its wider usage in modern applications and to fa-
cilitate further development of SPARSKIT. Tools available from the Common Component
Architecture (CCA) [2] such as Babel [4], Chasm [5], and Ccafe [2] framework provide a
means of creating a SPARSKIT package that can be used by many different programming
languages. Taking SPARSKIT and applying an object-oriented style of design, we have
created a package that can be accessed by many different object-oriented programming
languages. There is also the possibility of writing extensions in these languages.

Related work. Hypre [3] and PETSc [1] are two software packages that also contain
a suite of sparse matrix computation routines, including parallel implementations. Their
original design uses modern software engineering tools and practices, and thus yields to
component design easier than a legacy code does so. Fundamental questions, however,
— such as component structure, interaction, argument lists — require a general solution
that would satisfy the needs of a majority of applications. For example, in the Hypre
CCA interface, parameters are explicitly associated into name-value pairs before a call to
a component. PETSc CCA interfaces have not been made public yet. In this paper, we
propose another possible interface to sparse matrix computations and put forward some
issues that we face in our design process.

2 SPARSKIT Component Design

To create a SPARSKIT component, a re-design of the basic structure was necessary. Previ-
ously, the directory and code structure were that of a non-object-oriented software package
due to Fortran77 being non-object oriented. We created a Java-like structure such that
all the members of the same “class” perform a particular type of task in SPARSKIT. For
example, preconditioning, iterative accelerating, or matrix formatting — each belongs to
its own “class”, i.e., implements a particular interface. The former two are used to solve
a sparse linear system approzimately, by performing a series of iterations, with precondi-
tioning serving as a transformation of the linear system that may yield fewer iterations.
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This design allows for more functionality, possibly developed in another language, to be
supported by the CCA tools and be added transparently to the user.

In addition, the user may be able to take advantage of the new functionality without
changing the source code due to a standard set of arguments and naming conventions,
which we have developed for each interface. This issue is very important for easy and
uniform access to SPARSKIT routines. Since the preconditioners in original SPARSKIT
accept varying number and types of arguments, it was much harder to design a uniform
interface for preconditioners than for accelerators, which typically accept the same argu-
ments and all use reverse communication (see [6] for more details). Our implementation
of SPARSKIT interfaces also simplifies SPARSKIT usage by removing the need for tem-
porary work arrays, which are often passed as subroutine arguments in Fortran77. In a
nutshell, we propose the following argument list and names for a general preconditioner
interface (also called Port in the CCA terminology): prefixes are the names as appear
in SPARSKIT and arguments consist of the input matrix represented as three arrays in
a sparse storage format, an array of integer parameters, an array of double-valued pa-
rameters, and the output matrix, also represented as three arrays. We use sparse matrix
representation as a set of arrays, similar to the one in Fortran77, to avoid the potential
need for copying between different representations. The following example shows how this
port design can be accessed in C++:

skit::components::ilut ilut = skit::components::ilut:: create();
ilut.create(a,ja,ia,1fil,droptol,alu, jlu,ju);

The same example will look like this when accessed using Python:
import skit.components.ilut

ilut = skit.componenents.ilut.ilut()
ilut.create(a,ja,ia,1fil,droptol,alu, jlu,ju);

In this code fragment, ilut stands for the incomplete LU factorization with dual thresh-
old (ILUT) [7] and is one of the SPARSKIT preconditioners [6]. Using our component
in other object-oriented languages has similar syntax as does using the other parts of our
component.

One feature of the CCA tools is that they use a standard type for arrays across
all the supported languages. These arrays are called SIDL arrays and they allow for easy
interoperability on arrays between the supported languages and a standard way of handling
those arrays in each language. For SPARSKIT to be implemented as a CCA component,
all the Fortran77 arrays had to be converted into SIDL arrays. We also opted to shift the
variables that were used to index the arrays to ensure that they were indexing the correct
element in the arrays. Converting the Fortran77 arrays to SIDL arrays can be somewhat
cumbersome and must be done manually at this point. We are currently investigating
ways to help automate this process to speed up the process of componentizing current
SPARSKIT and possible future additions to the package.



Table 1: Execution Times on Generated Matrix

nnz | SKIT, sec \ SKIT-CCA, sec \ diff \

41440 0.027 0.04 0.013
50257 0.035 0.05 0.015
65241 0.044 0.06 0.016
95205 0.083 0.12 0.037
132660 0.14 0.19 0.050

3 Test Results

We have successfully created a CCA Port prototype of a SPARSKIT component that
implements multiple accelerators, preconditioners, format conversion, and matrix-vector
multiplication components. Clients have also been written in C, C++4, and Python to
demonstrate the interoperability achieved by our SPARSKIT component. The numbers
in Table 1 show the results of tests ran under the original SPARSKIT compared with
the same tests run under our SPARSKIT Component (column SKIT) using a C++ client
(column SKIT-CCA). The tests were run on a Pentium 4 3.2GHz with 1 GB of RAM
running Debian Sarge/Testing with the 2.6.8 Linux kernel. The CCA-Tools 0.5.6 rc4
sumo tarball was used as the base and the tests were run using matrices generated by
SPARSKIT gen57pt function (column nnz in Table 1 refers to the number of non-zero
elements in the matrix), ILUT as the preconditioner, and FGMRES [7] as the accelerator.
The execution times are from an average of 5 runs on each array size. The overhead
incurred by the Component framework appears to increase steadily as the size of the
arrays tested increase. This can be seen in the difference between the running time for
SKIT and SKIT-CCA (see column diff in Table 1).

4 Open Issues

In the future we plan to use the Chasm Tools to aid in porting the rest of SPARSKIT
into our component structure. At this time, however, Chasm does not have full Fortran77
support. We are currently communicating with Craig Rasmussen from the Chasm team
in efforts to address this issue. We are also investigating the applicability and potential
of a more complex interface structure, interface hierarchy. In particular, we want to have
“external” and “internal” CCA ports. External ports would be exposed to all other CCA
ports in the framework and internal ports would be local to the package they are used in.
Internal ports can be used to give a default implementation of a specific port if no other
components providing that port are available. We envision internal and external ports
being similar to how public and private are represented in object-oriented languages.
The idea of these two types of Ports is motivated by the recursive nature of some precon-
ditioners to be added to SPARSKIT. In particular, Algebraic Recursive Multilevel Solver
(ARMS) [8] has a multilevel structure, each level of which may be defined recursively by
a wide range of sparse or dense linear system solution routines.
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